Biphasic activation of the BMP pathway patterns the Drosophila embryonic dorsal region.

نویسندگان

  • R Dorfman
  • B Z Shilo
چکیده

The BMP pathway patterns the dorsal region of the Drosophila embryo. Using an antibody recognizing phosphorylated Mad (pMad), we followed signaling directly. In wild-type embryos, a biphasic activation pattern is observed. At the cellular blastoderm stage high pMad levels are detected only in the dorsal-most cell rows that give rise to amnioserosa. This accumulation of pMad requires the ligand Screw (Scw), the Short gastrulation (Sog) protein, and cleavage of their complex by Tolloid (Tld). When the inhibitory activity of Sog is removed, Mad phosphorylation is expanded. In spite of the uniform expression of Scw, pMad expansion is restricted to the dorsal domain of the embryo where Dpp is expressed. This demonstrates that Mad phosphorylation requires simultaneous activation by Scw and Dpp. Indeed, the early pMad pattern is abolished when either the Scw receptor Saxophone (Sax), the Dpp receptor Thickveins (Tkv), or Dpp are removed. After germ band extension, a uniform accumulation of pMad is observed in the entire dorsal domain of the embryo, with a sharp border at the junction with the neuroectoderm. From this stage onward, activation by Scw is no longer required, and Dpp suffices to induce high levels of pMad. In these subsequent phases pMad accumulates normally in the presence of ectopic Sog, in contrast to the early phase, indicating that Sog is only capable of blocking activation by Scw and not by Dpp.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of the BMP Signaling-Responsive Transcriptional Network in the Drosophila Embryo

The BMP signaling pathway has a conserved role in dorsal-ventral axis patterning during embryonic development. In Drosophila, graded BMP signaling is transduced by the Mad transcription factor and opposed by the Brinker repressor. In this study, using the Drosophila embryo as a model, we combine RNA-seq with Mad and Brinker ChIP-seq to decipher the BMP-responsive transcriptional network underpi...

متن کامل

The maternal JAK/STAT pathway of Drosophila regulates embryonic dorsal-ventral patterning.

Activation of NFkappaB plays a pivotal role in many cellular processes such as inflammation, proliferation and apoptosis. In Drosophila, nuclear translocation of the NFkappaB-related transcription factor Dorsal is spatially regulated in order to subdivide the embryo into three primary dorsal-ventral (DV) domains: the ventral presumptive mesoderm, the lateral neuroectoderm and the dorsal ectoder...

متن کامل

The Ca2+-dependent protease Calpain A regulates Cactus/IκB levels during Drosophila development in response to maternal Dpp signals

Regulation of NF kappaB activity is central to many processes during development and disease. Activation of NF kappaB family members depends on degradation of inhibitory I kappaB proteins. In Drosophila, a nuclear gradient of the NF kappaB/c-rel protein Dorsal subdivides the embryonic dorsal-ventral axis, defining the extent and location of mesodermal and ectodermal territories. Activation of t...

متن کامل

Evolution of BMP signaling in Drosophila oogenesis: a receptor-based mechanism.

The bone morphogenetic protein (BMP) signaling pathway is a conserved regulator of cellular and developmental processes in animals. The mechanisms underlying BMP signaling activation differ among tissues and mostly reflect changes in the expression of pathway components. BMP signaling is one of the major pathways responsible for the patterning of the Drosophila eggshell, a complex structure der...

متن کامل

Dorsoventral Polarity of the Nasonia Embryo Primarily Relies on a BMP Gradient Formed without Input from Toll

In Drosophila, Toll signaling leads to a gradient of nuclear uptake of Dorsal with a peak at the ventral egg pole and is the source for dorsoventral (DV) patterning and polarity of the embryo. In contrast, Toll signaling plays no role in embryonic patterning in most animals, while BMP signaling plays the major role. In order to understand the origin of the novelty of the Drosophila system, we h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 128 6  شماره 

صفحات  -

تاریخ انتشار 2001